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Engineering Incremental Change

An evolutionary architecture supports guided, incremental change across multiple
dimensions.

—our definition

In 2010, Jez Humble and Dave Farley released Continuous Delivery, a collection of
practices to enhance the engineering efficiency in software projects. They provided
the mechanism for building and releasing software via automation and tools but not
the structure of how to design evolvable software. Evolutionary architecture assumes
these engineering practices as prerequisites but addresses how to utilize them to help
design evolvable software.

Our definition of evolutionary architecture implies incremental change, meaning the
architecture should facilitate change in small increments. This chapter describes
architectures that support incremental change along with some of the engineering
practices used to achieve incremental change, an important building block of evolu‐
tionary architecture. We discuss two aspects of incremental change: development,
which covers how developers build software, and operational, which covers how
teams deploy software.

Here is an example of the operational side of incremental change. We start with the
fleshed out example of incremental change from Chapter 1, which includes additional
details about the architecture and deployment environment. PenultimateWidgets, our
seller of widgets, has a catalog page backed by a microservice architecture and engi‐
neering practices, as illustrated in Figure 1-1.

5

http://continuousdelivery.com


Figure 1-1. Initial configuration of PenultimateWidgets’ component deployment

PenultimateWidgets’ architects have implemented microservices that are operation‐
ally isolated from other services. Microservices implement a share nothing architec‐
ture: Each service is operationally distinct to eliminate technical coupling and
therefore promote change at a granular level. PenultimateWidgets deploys all their
services in separate containers to trivialize operational changes.

The website allows users to rate different widgets with star ratings. But other parts of
the architecture also need ratings (customer service representatives, shipping pro‐
vider evaluation, and so on), so they all share the star rating service. One day, the star
rating team releases a new version alongside the existing one that allows half-star rat‐
ings—a significant upgrade, as shown in Figure 1-2.

Figure 1-2. Deploying with an improved star rating service showing the addition of the
half-star rating

The services that utilize ratings aren’t required to migrate to the improved rating ser‐
vice but can gradually transition to the better service when convenient. As time pro‐
gresses, more parts of the ecosystem that need ratings move to the enhanced version.
Part of PenultimateWidgets’ DevOps practices include architectural monitoring—
monitoring not only the services, but also the routes between services. When the
operations group observes that no one has routed to a particular service within a
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given time interval, they automatically disintegrate that service from the ecosystem,
as shown in Figure 1-3.

Figure 1-3. All services now use the improved star rating service

The mechanical ability to evolve is one the key components of an evolutionary archi‐
tecture. Let’s dig one level deeper in the abstraction above.

PenultimateWidgets has a fine-grained microservices architecture, where each service
is deployed using a container (like Docker) and using a service template to handle
infrastructure coupling. Applications within PenultimateWidgets consist of routes
between instances of services running—a given service may have multiple instances
to handle operational concerns like on-demand scalability. This allows architects to
host different versions of services in production and control access via routing. When
a deployment pipeline deploys a service, it registers itself (location and contract) with
a service discovery tool. When a service needs to find another service, it uses the dis‐
covery tool to learn the location and version suitability via the contract.

When the new star rating service is deployed, it registers itself with the service dis‐
covery tool and publishes its new contract. The new version of the service supports a
broader range of values—specifically, half-point values—than the original. That
means the service developers don’t have to worry about restricting the supported val‐
ues. If the new version requires a different contract for callers, it is typical to handle
that within the service rather than burden callers with resolving which version to call.

When the team deploys the new service, they don’t want to force the calling services
to upgrade to the new service immediately. Thus, the architect temporarily changes
the star-service endpoint into a proxy that checks to see which version of the service
is requested and routes to the requested version. No existing services must change to
use the rating service as they always have, but new calls can start taking advantage of
the new capability. Old services aren’t forced to upgrade and can continue to call the
original service as long as they need it. As the calling services decide to use the new
behavior, they change the version they request from the endpoint. Over time, the
original version falls into disuse, and at some point, the architect can remove the old
version from the endpoint when it is no longer needed. Operations is responsible for

Engineering Incremental Change | 7

https://www.docker.com/


scanning for services that no other services call anymore (within some reasonable
threshold) and garbage collecting the unused services.

All the changes to this architecture, including the provisioning of external compo‐
nents such as the database, happen under the supervision of a deployment pipeline,
removing the responsibility of coordinating the disparate moving parts of the deploy‐
ment from DevOps.

This chapter covers the characteristics, engineering practices, team considerations,
and other aspects of building architectures that support incremental change.

Building Blocks
Many of the building blocks required for agility at the architecture level have become
mainstream over the last few years under the umbrella of Continuous Delivery and
its engineering practices.

Software architects have to determine how systems fit together, often by creating dia‐
grams, with varying degrees of ceremony. Architects often fall into the trap of seeing
software architecture as an equation they must solve. Much of the commercial tooling
sold to software architects reinforces the mathematical illusion of certainty with
boxes, lines, and arrows. While useful, these diagrams offer a 2D view—a snapshot of
an ideal world—but we live in a 4D world. To flesh out that 2D diagram, we must add
specifics. The ORM label Figure 1-4 becomes JDBC 2.1, evolving into a 3D view of the
world, where architects prove their designs in a real production environment using
real software. As Figure 1-4 illustrates, over time, changes in business and technology
require architects to adopt a 4D view of architecture, making evolution a first-class
concern.

Nothing in software is static. Take a computer, for example. Install an operating sys‐
tem and a nontrivial set of software on it, then lock it in a closet for a year. At the end
of the year, retrieve it from the closet and plug it into the wall and Internet…and
watch it install updates for a long time. Even though no one changed a single bit on
the computer, the entire world kept moving; this is the dynamic equilibrium we
described earlier. Any reasonable architecture plan must include evolutionary
change.

When we know how to put architecture into production and upgrade it to incorpo‐
rate inevitable changes (security patches, new versions of software, evolutions of the
architecture, and so on) as needed, we’ve graduated to a 4D world. Architecture isn’t a
static equation but rather a snapshot of an ongoing process, as illustrated in
Figure 1-4.
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Figure 1-4. Modern architecture must be deployable and changeable to survive the real
world

Continuous Delivery and the DevOps movement illustrate the need to implement an
architecture and keep it current. There is nothing wrong with modeling architecture
and capturing those efforts, but the model is merely the first step.

Architecture is abstract until operationalized, when it becomes a
living thing.

Figure 1-4 illustrates the natural evolution of version upgrades and new tool choices.
Architectures evolve in other ways as well, as we’ll see in the Chapter 6.

Architects cannot judge the long-term viability of any architecture until design, imple‐
mentation, upgrade, and inevitable change are successful. And perhaps even enabled
the architecture to withstand unusual occurrences based on incipient unknown
unknowns, which we cover in Chapter 6.

Testable
One of the oft ignored “-ilities” of software architecture is testability—can characteris‐
tics of the architecture submit to automated tests to verify veracity? Unfortunately, it
is often difficult to test architecture parts due to lack of tool support.

However, some aspects of an architecture do yield to easy testing. For example, devel‐
opers can test concrete architectural characteristics like coupling, develop guidelines,
and eventually automate those tests.
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Here is an example of a fitness function defined at the technical architecture dimen‐
sion to control the directionality of coupling between components. In the Java ecosys‐
tem, JDepend is a metrics tool that analyzes the coupling characteristics of packages.
Because JDepend is written in Java, it has an API that developers can leverage to build
their own analysis via unit tests.

Consider the fitness function in Example 1-1, expressed as a JUnit test:

Example 1-1. JDepend test to verify the directionality of package imports

public void testMatch() {
    DependencyConstraint constraint = new DependencyConstraint();

    JavaPackage persistence = constraint.addPackage("com.xyz.persistence");
    JavaPackage web = constraint.addPackage("com.xyz.web");
    JavaPackage util = constraint.addPackage("com.xyz.util");

    persistence.dependsUpon(util);
    web.dependsUpon(util);

    jdepend.analyze();

    assertEquals("Dependency mismatch",
             true, jdepend.dependencyMatch(constraint));
    }

In Example 1-1, we define the packages in our application and then define the rules
about imports. One of the bedeviling problems in component-based systems is com‐
ponent cycles—i.e., when component A references component B, which in turn refer‐
ences component A again. If a developer accidentally writes code that imports into
util from persistence, this unit test will fail before the code is committed. We pre‐
fer building unit tests to catch architecture violations over using strict development
guidelines (with the attendant bureaucratic scolding): It allows developers to focus
more on the domain problem and less on plumbing concerns. More importantly, it
allows architects to consolidate rules as executable artifacts.

Fitness functions can have any owner, including shared ownership. In the example
shown in Example 1-1, the application team may own the directionality fitness func‐
tion because it is a particular concern for that project. In the same deployment pipe‐
line, fitness functions common across multiple projects may be owned by the security
team. In general, the definition and maintenance of fitness functions is a shared
responsibility between architects, developers, and any other role concerned with
maintaining architectural integrity.

Many things about architecture are testable. Tools exist to test the structural charac‐
teristics of architecture such as JDepend (or a similar tool in the .NET ecosystem
NDepend). Tools also exist for performance, scalability, resiliency, and a variety of
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other architectural characteristics. Monitoring and logging tools also qualify: Any
tool that helps assess some architectural characteristic qualifies as a fitness function.

Once they have defined fitness functions, architects must ensure that they are evalu‐
ated in a timely manner. Automation is the key to continual evaluation. A deployment
pipeline is often used to evaluate tasks like this. Using a deployment pipeline, archi‐
tects can define which, when, and how often fitness functions execute.

Deployment Pipelines
Continuous Delivery describes the deployment pipeline mechanism. Similar to a con‐
tinuous integration server, a deployment pipeline “listens” for changes, then runs a
series of verification steps, each with increasing sophistication. Continuous Delivery
practices encourage using a deployment pipeline as the mechanism to automate com‐
mon project tasks, such as testing, machine provisioning, deployments, etc. Open
source tools such as GoCD facilitate building these deployment pipelines.

A typical deployment pipeline automatically builds the deployment environment (a
container like Docker or a bespoke environment generated by a tool like Puppet or
Chef) as shown in Figure 1-5.

Figure 1-5. Deployment pipeline stages
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By building the deployment image that the deployment pipeline executes, developers
and operations have a high degree of confidence: The host computer (or virtual
machine) is declaratively defined, and it’s a common practice to rebuild it from noth‐
ing.

Continuous Integration Versus Deployment Pipelines
Continuous integration is a well-known engineering practice in agile projects that
encourages developers to integrate as early and as often as possible. To facilitate con‐
tinuous integration, tools such as ThoughtWorks CruiseControl and other commer‐
cial and open source offerings have emerged. Continuous integration provides an
“official” build location, and developers enjoy the concept of a single mechanism to
ensure working code. However, a continuous integration server also provides a per‐
fect time and place to perform common project tasks such as unit testing, code cover‐
age, metrics, functional testing, and so on. For many projects, the continuous
integration server includes a list of tasks to perform whose successful culmination
indicates build success. Large projects eventually build an impressive list of tasks.

Deployment pipelines encourage developers to split individual tasks into stages. A
deployment pipeline includes the concept of multi-stage builds, allowing developers
to model as many post-checkin tasks as necessary. This ability to separate tasks dis‐
cretely supports the broader mandates expected of a deployment pipeline—to verify
production readiness—compared to a continuous integration (CI) server primarily
focused on integration. Thus, a deployment pipeline commonly includes application
testing at multiple levels, automated environment provisioning, and a host of other
verification responsibilities.

Some developers try to “get by” with a continuous integration server but soon find
they lack the level of separation of tasks and feedback necessary.

The deployment pipeline also offers an ideal way to execute the fitness functions
defined for an architecture: It applies arbitrary verification criteria, has multiple
stages to incorporate differing levels of abstraction and sophistication of tests, and
runs every single time the system changes in any way. A deployment pipeline with
fitness functions added is shown in Figure 1-6.
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Figure 1-6. A deployment pipeline with fitness functions added as stages

Figure 1-6 shows a collection of atomic and holistic fitness functions with the latter in
a more complex integration environment. Deployment pipelines can ensure the rules
defined to protect architectural dimensions execute each time the system changes.

PenultimateWidgets Deployment Pipelines
In Chapter 2, we described PenultimateWidgets’ spreadsheet of requirements. Once
they adopted some of the Continuous Delivery engineering practices, they realized
that nonfunctional platform requirements work better in an automated deployment
pipeline. To that end, service developers created a deployment pipeline to validate the
fitness functions created both by the enterprise architects and by the service team.
Now, each time the team makes a change to the service, a barrage of tests validates
both the correctness of the code and its overall fitness within the architecture.

Another common practice in evolutionary architecture projects is continuous
deployment—using a deployment pipeline to put changes into production contingent
on successfully passing the pipeline’s gauntlet of tests and other verifications. While
continuous deployment is ideal, it requires sophisticated coordination: Developers
must ensure changes deployed to production on an ongoing basis don’t break things.
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To solve this coordination problem, a fan out operation is commonly used in deploy‐
ment pipelines where the pipeline runs several jobs in parallel, as shown in
Figure 1-7.

Figure 1-7. Deployment pipeline fan out to test multiple scenarios

As shown in Figure 1-7, when a team makes a change, they have to verify two things:
They haven’t negatively affected the current production state (because a successful
deployment pipeline execution will deploy code into production) and their changes
were successful (affecting the future state environment). A deployment pipeline fan
out allows tasks (testing, deploy, and so on) to execute in parallel, saving time. Once
the series of concurrent jobs illustrated in Figure 1-7 completes, the pipeline can eval‐
uate the results and if everything is successful, perform a fan in, consolidating to a
single thread of action to perform tasks like deployment. Note that the deployment
pipeline may perform this combination of fan out and fan in numerous times when‐
ever the team needs to evaluate a change in multiple contexts.

Another common issue with continuous deployment is business impact. Users don’t
want a barrage of new features showing up on a regular basis but would rather have
them staged in a more traditional way such as a “Big Bang” deployment. A common
way to accommodate both continuous deployment and staged releases is to use fea‐
ture toggles. By implementing new features hidden underneath feature toggles, devel‐
opers can safely deploy the feature to production without worrying about users
seeing it prematurely.
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QA in Production
One beneficial side effect of habitually building new features using feature toggles is
the ability to perform QA tasks in production. Many companies don’t realize they can
use their production environment for exploratory testing. Once a team becomes com‐
fortable using feature toggles, they can deploy those changes to production since most
feature toggle frameworks allow developers to route users based on wide variety of
criteria (IP address, access control list (ACL), etc.). If a team deploys new features
within feature toggles to which only the QA department has access, they can test in
production.

Using deployment pipelines in engineering practices, architects can easily apply
project fitness functions. Figuring out which stages are needed is a common chal‐
lenge for developers designing a deployment pipeline. Casting the project’s architec‐
tural concerns (including evolvability) as fitness functions provides many benefits:

• Fitness functions are designed to have objective, quantifiable results
• Capturing all concerns as fitness function creates a consistent enforcement

mechanism
• Having a list of fitness functions allows developers to most easily design deploy‐

ment pipelines

Determining when in the project’s build cycle to run fitness functions, which ones to
run, and the proper context is a nontrivial undertaking. However, once the fitness
functions inside a deployment pipeline are in place, architects and developers have a
high level of confidence that evolutionary changes won’t violate the project guide‐
lines. Architectural concerns are often poorly elucidated and sparsely evaluated, often
subjectively; creating them as fitness functions allows better rigor and therefore better
confidence in the engineering practices.

Combining Fitness Function Categories
Fitness function categories often intersect when implementing them in mechanisms
like deployment pipelines. Here are some common mashups of fitness function cate‐
gories, along with examples.

atomic + triggered
This type of fitness function is exemplified by unit and functional tests run as
part of software development. Developers run them to verify changes, and an
automation mechanism, such as a deployment pipeline, applies continuous inte‐
gration to ensure timeliness. A common example of this type of fitness function
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is a unit test that verifies some aspect of the architectural integrity of the applica‐
tion architecture, such as circular dependencies or cyclomatic complexity.

holistic + triggered
Holistic, triggered fitness functions are designed to run as part of integration test‐
ing via a deployment pipeline. Developers design these tests specifically to test
how different aspects of the system interact in well-defined ways. For example,
developers may be curious to see what kind of impact tighter security has on scal‐
ability. Architects design these tests to intentionally test some integration charac‐
teristic in the code base because breakages indicate some architectural
shortcoming. Like all triggered tests, developers typically run these fitness func‐
tions both during development and as part of a deployment pipeline or continu‐
ous integration environment. Generally, these are tests and metrics that have
well-known outcomes.

atomic + continual
Continual tests run as part of the architecture, and developers design around
their presence. For example, architects might be concerned that all REST end‐
points support the proper verbs, exhibit correct error handling, and support
metadata properly and therefore build a tool that runs continually to call REST
endpoints (just as normal clients would) to verify the results. The atomic scope of
these fitness functions suggests that they test just one aspect of the architecture,
but continual indicates that the tests run as part of the overall system.

holistic + continual
Holistic, continual fitness functions test multiple parts of the system all the time.
Basically, this mechanism represents an agent (or another client) in a system that
constantly assesses a combination of architectural and operational qualities. An
outstanding example of a real-world continual holistic fitness function is Netflix’s
Chaos Monkey. When Netflix designed their distributed architecture, they
designed it to run on the Amazon Cloud. But engineers were concerned what
sort of odd behavior could occur because they have no direct control over their
operations, such as high latency, availability, elasticity, and so on, in the Cloud. To
assuage their fears, they created Chaos Monkey, eventually followed by an entire
open source Simian Army. Chaos Monkey “infiltrates” an Amazon data center
and starts making unexpected things happen: Latency goes up, reliability goes
down, and other chaos ensues. By designing with Chaos Monkey in mind, each
team must build resilient services. The RESTful verification tool mentioned in in
the previous section exists as the Conformity Monkey, which checks each service
for architect-defined best practices.

Note that Chaos Monkey isn’t a testing tool run on a schedule—it runs continuously
within Netflix’s ecosystem. Not only does this force developers to build systems that
withstand problems, it tests the system’s validity continually. Having this constant
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verification built into the architecture has allowed Netflix to build one of the the most
robust systems in the world. The Simian Army provides an excellent example of a
holistic continual operational fitness function. It runs against multiple parts of the
architecture at once, ensuring architectural characteristics (resiliency, scalability, etc.)
are maintained.

Holistic, continual fitness functions are the most complex fitness functions for devel‐
opers to implement but can provide great power, as the following case study illus‐
trates.

Case Study: Architectural Restructuring while Deploying 60
Times/Day
GitHub is a well-known developer-centric website with aggressive engineering practi‐
ces, deploying on average 60 times a day. They describe a problem in their blog
“Move Fast and Fix Things” that will make many architects shudder in horror. It
turns out that GitHub has long used a shell script wrapped around command-line Git
to handle merges, which works correctly but doesn’t scale well enough. The Git engi‐
neering team built a replacement library for many command-line Git functions called
libgit2 and implemented their merge functionality there, thoroughly testing it locally.

But now they must deploy the new solution into production. This behavior has been
part of GitHub since its inception and has worked flawlessly. The last thing the devel‐
opers want to do is introduce bugs in existing functionality, but they must address
technical debt as well.

Fortunately, GitHub developers created and open sourced Scientist, a framework that
provides holistic, continual testing to vet changes to code. Example 1-2 gives us the
structure of a Scientist test.

Example 1-2. Scientist setup for an experiment

require "scientist"

class MyWidget
  include Scientist

  def allows?(user)
    science "widget-permissions" do |e|
      e.use { model.check_user(user).valid? } # old way
      e.try { user.can?(:read, model) } # new way
    end # returns the control value
  end
end
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In Example 1-2, the developer takes the existing behavior and encapsulates it with the
use block (called the control) and adds the experimental behavior to the try block
(called the candidate). The science block handles the following details during the
invocation of the code:

Decides whether to run the try block
Developers configure Scientist to determine how the experiment runs. For exam‐
ple, in this case study—the goal of which was to update their merge functionality
—1% of random users tried the new merge functionality. In either case, Scientist
always returns the results of the use block, ensuring the caller always receives the
existing behavior in case of differences.

Randomizes the order that use and try blocks run
Scientist does this to prevent accidentally masking bugs due to unknown depen‐
dencies. Sometimes the order or other incidental factors can cause false positives;
by randomizing their order, the tool makes those faults less likely.

Measures the durations of all behaviors
Part of Scientist’s job is A/B performance testing, so monitoring performance is
built in. In fact, developers can use the framework piecemeal—for example, they
can use it to measure calls without performing experiments.

Compares the result of try to the result of use
Because the goal is refactoring existing behavior, Scientist compares and logs the
results of each call to see if differences exist.

Swallows (but logs) any exceptions raised in the try block
There’s always a chance that new code will throw unexpected exceptions. Devel‐
opers never want end users to see these errors, so the tool makes them invisible
to the end user (but logs it for developer analysis).

Publishes all this information
Scientist makes all its data available in a variety of formats.

For the merge refactoring, the GitHub developers used the following invocation to
test the new implementation (called create_merge_commit_rugged), as shown in
Example 1-3.

Example 1-3. Experimenting with a new merge algorithm

def create_merge_commit(author, base, head, options = {})
  commit_message = options[:commit_message] || "Merge #{head} into #{base}"
  now = Time.current

  science "create_merge_commit" do |e|
    e.context :base => base.to_s, :head => head.to_s, :repo => repository.nwo
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    e.use { create_merge_commit_git(author, now, base, head, commit_message) }
    e.try { create_merge_commit_rugged(author, now, base, head, commit_message) }
  end
end

In Example 1-3, the call to create_merge_commit_rugged occurred in 1% of invoca‐
tions, but, as noted in this case study, at GitHub’s scale, all edge cases appear quickly.

When this code executes, end users always receive the correct result. If the try block
returns a different value from use, it is logged, and the use value is returned. Thus,
the worse case for end users is exactly what they would have gotten before the refac‐
toring. After running the experiment for 4 days and experiencing no slow cases or
mismatched results for 24 hours, they removed the old merge code and left the new
in place.

From our perspective, Scientist is a fitness function. This case study is an outstanding
example of the strategic use of a holistic, continous fitness function to allow develop‐
ers to refactor a critical part of their infrastructure with confidence. They changed a
key part of their architecture by running the new version alongside the existing,
essentially turning the legacy implementation into a consistency test.

In general, most architectures will have a large number of atomic fitness functions
and a few key holistic ones. The determining factor of atomicity comes down to what
developers are testing and how broad are the results.

Conflicting Goals
The agile software development process has taught us that the sooner a developer can
detect problems, the less effort is required to fix them. One of the side effects of
broadly considering all the dimensions in software architecture is the early identifica‐
tion of goals that conflict across dimensions. For example, developers at an organiza‐
tion may want to support the most aggressive pace of change to support new features.
Fast change to code implies fast changes to database schemas, but the database
administrators are more concerned about stability because they are building a data
warehouse. The two evolution goals conflict across the technical and data architec‐
ture.

Obviously, some compromise must occur, taking into account the myriad factors that
affect the underlying business. Using architecture dimensions as a technique for iden‐
tifying portions of concern in architecture (plus fitness functions to evaluate them)
allows an apples-to-apples comparison, making the prioritization exercise more
informed.

Conflicting goals are inevitable. However, discovering and quantifying those conflicts
early allows architects to make better informed decisions and create more clearly
defined goals and principles.
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Case Study: Adding Fitness Functions to PenultimateWidgets’
Invoicing Service
Our exemplar company, PenultimateWidgets, has an architecture that includes a ser‐
vice to handle invoicing. The invoicing team wants to replace outdated libraries and
approaches but wants to ensure these changes don’t impact other teams ability to
integrate with them.

The invoicing team identified the following needs:

Scalability
While performance isn’t a big concern for PenultimateWidgets, they handle
invoicing details for several resellers, so the invoicing service must maintain
availability service-level agreements.

Integration with other services
Several other services in the PenultimateWidgets ecosystem use invoicing. The
team wants to make sure integration points don’t break while making internal
changes.

Security
Invoicing means money, and security is always an ongoing concern.

Auditability
Some state regulations require that changes to taxation code be verified by an
independant accountant.

The invoicing team uses a continuous integration server and recently upgraded to on-
demand provisioning of the environment that runs their code. To implement evolu‐
tionary architecture fitness functions, they implement a deployment pipeline to
replace the continuous integration server, allowing them to create several stages of
execution, as shown in Figure 1-8.
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Figure 1-8. PenultimateWidgets deployment pipeline

PenultimateWidgets’ deployment pipeline consists of six stages.

Stage 1—Replicating CI
The first stage replicates the behavior of the former CI server, running unit, and
functional tests.

Stage 2—Containerize and Deploy
Developers use the second stage to build containers for their service, allowing
deeper levels of testing, including deploying the containers to a dynamically cre‐
ated test environment.

Stage 3—Atomic Fitness Functions
In the third stage atomic fitness functions, including automated scalability tests
and security penetration testing, are executed. This stage also runs a metrics tool
that flags any code within a certain package that developers changed, pertaining
to auditability. While this tool doesn’t make any deteriminations, it assists a later
stage in narrowing in on specific code.
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Stage 4—Holistic Fitness Functions
The fourth stage focuses on holistic fitness functions, including testing contracts
to protect integration points and some further scalability tests.

Stage 5a—Security Review (manual)
This stage includes a manual stage by a specific security group within the organi‐
zation to review, audit, and assess any security vulnerabilities in the codebase.
Deployment pipelines allow the definition of manual stages, triggered on
demand by the relevant security specialist.

Stage 5b—Auditing (manual)
PenultimateWidgets is based in Springfield, where the state mandates specific
auditing rules. The invoicing team builds this manual stage into their deployment
pipeline, which offers several benefits. First, treating auditing as a fitness function
allows developers, architects, auditors, and others to think about this behavior in
a unified way—a necessary evaluation to deterimine the system’s correct func‐
tion. Second, adding the evaluation to the deployment pipeline allows developers
to assess the engineering impact of this behavior compared equally to other auto‐
mated evaluations within the deployment pipeline.

For example, if the security review happens weekly but auditing happens only
monthly, the bottleneck to faster releases is clearly the auditing stage. By treating
both security and audit as stages in the deployment pipeline, decisions concern‐
ing both can be addressed more rationally: Is it worth value to the company to
increase release cadence by having consultants perform the necessary audit more
often?

Stage 6—Deployment
The last stage is deployment into the production environment. This is a automa‐
ted stage for PenultimateWidgets and is triggered only if the two upstream man‐
ual stages (security review and audit) report success.

Interested architects at PenultimateWidgets receive a weekly automatically generated
report about the success/failure rate of the fitness functions, helping them gauge
health, cadence, and other factors.

Hypothesis- and Data-Driven Development
The GitHub example in “Case Study: Architectural Restructuring while Deploying 60
Times/Day” on page 17 using the Scientist framework is an example of data-driven
development—allow data to drive changes and focus efforts on technical change. A
similar approach that incorporates the business rather than technical concerns is
hypothesis-driven development.
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In the week between Christmas 2013 and New Year’s Day 2014, Facebook encoun‐
tered a problem: More photos were uploaded to Facebook in that week than all the
photos on Flickr, and more than a million of them were flagged as offensive. Face‐
book allows users to flag photos they believe potentially offensive and then reviews
them to determine objectively if they are. But this dramatic increase in photos created
a problem: There was not enough staff to review the photos.

Fortunately, Facebook has modern DevOps and the ability to perform experiments
on their users. When asked about the chances a typical Facebook user has been
involved in an experiment, one Facebook engineer claimed “Oh, one hundred percent
—we routinely have more than twenty experiments running at time.” They used this
experimental capability to ask users follow-up on questions about why photos were
deemed offensive and discovered many delightful quirks of human behavior. For
example, people don’t like to admit that they look bad in a photo but will freely admit
that the photographer did a poor job. By experimenting with different phrasing and
questions, the engineers could query their actual users to determine why they flagged
a photo as offensive. In a relatively short amount of time, Facebook shaved off
enough false positives to restore offensive photos to a manageable problem by build‐
ing a platform that allowed for experimentation.

In the book Lean Enterprise (O’Reilly, 2014), Barry O’Reilly describes the modern
process of hypothesis-driven development. Under this process, rather than gathering
formal requirements and spending time and resources building features into applica‐
tions, teams should leverage the scientific method instead. Once teams have created
the minimal viable product version of an application (whether as a new product or by
performing maintenance work on an existing application), they can build hypotheses
during new feature ideation rather than requirements. Hypothesis-driven devlopment
hypotheses are couched in terms of the hypothesis to test, what experiments can
determine the results, and what validating the hypothesis means to future application
development.

For example, rather than change the image size for sales items on a catalog page
because a business analyst thought it was a good idea, state it as a hypothesis instead:
If we make the sales images bigger, we hypothesize that it will lead to a 5% increase in
sales for those items. Once the hypothesis is in place, run experiments via A/B testing
—one group with bigger sales images and one without—and tally the results.

Even agile projects with engaged business users incrementally build themselves into a
bad spot. An individual decision by a business analyst may make sense in isolation,
but when combined with other features may ultimately degrade the overall experi‐
ence. In an excellent case study, mobile.de followed a logical path of accruing new
features haphazardly to the point where sales were diminishing, at least in part
because their UI had become so convoluted, as is often the result of development
continuing on mature software products. Several different philosophical approaches
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were: more listings, better prioritization, or better grouping. To help them make this
decision, they built three versions of the UI and allowed their users to decide.

The engine that drives agile software methodologies is the nested feedback loop: test‐
ing, continuous integration, iterations, etc. And yet, the part of the feedback loop that
incorporates the ultimate users of the application has eluded teams. Using
hypothesis-driven development, we can incorporate users in an unprecedented way,
learning from behavior and building what users really find valuable.

Hypothesis-driven development requires the coordination of many moving parts:
evolutionary architecture, modern DevOps, modified requirements gathering, and
the ability to run multiple versions of an application simultaneously. Service-based
architectures (like microservices) usually achieve side-by-side versions by intelligent
routing of services. For example, one user may execute the application using a partic‐
ular constellation of services while another request may use an entirely different set of
instances of the same services. If most services include many running instances (for
scalability, for example), it becomes trivial to make some of those instances slightly
different with enhanced functionality, and to route some users to those features.

Experiments should run long enough to yield significant results. Generally, it is pref‐
erable to find a measurable way to determine better outcomes rather than annoy
users with things like pop-up surveys. For example, does one hypothesized workflow
allow the user to complete a task with fewer keystrokes and clicks? By silently incor‐
porating users into the development and design feedback loop, you can build much
more functional software.

Case Study: What to Port?
One particular PenultimateWidgets application has been a workhorse, developed as a
Java Swing application over the better part of a decade and continually growing new
features. The company decided to port it to the web application. However, now the
business analysts face a difficult decision: How much of the existing sprawling func‐
tionality should they port? And, more practically, what order should they implement
the ported features of the new application to deliver the most functionality quickly?

One of the architects at PenultimateWidgets asked the business analysts what the
most popular features were, and they had no idea! Even though they have been speci‐
fying the details of the application for years, they had no real understanding of how
users used the application. To learn from users, the developers released a new version
of the legacy application with logging enabled to track which menu features users
actually used.

After a few weeks, they harvested the results, providing an excellent road map of what
features to port and in what order. They discovered that the invoicing and customer
lookup features were most commonly used. Surprisingly, one subsection of the appli‐
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cation that had taken great effort to build had very little use, leading the team to
decide to leave that functionality out of the new web application.
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